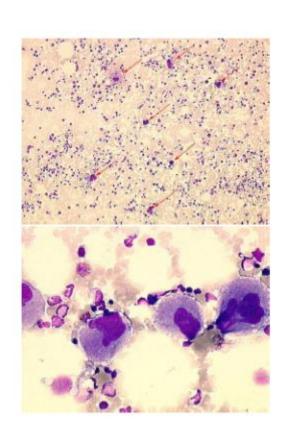


L'IPF dans le diagnostic des thrombopénies périphériques

Les thrombopénies

- Numération plaquettaire < 150 G/L
 - Indépendamment de l'âge et du sexe
- Impose un bilan étiologique rapide : surtout si thrombopénie profonde (< 20 G/L) ou compliquée d'un syndrome hémorragique
- En l'absence de signes cliniques ou de cause évidente, écarter thrombopénie artefactuelle
- Thrombopénie : risque hémorragique ++

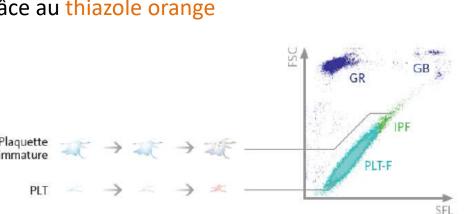
Origine centrale (20%)

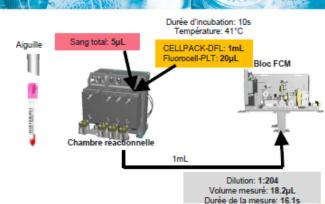

- Mégacaryocytes absents ou diminués
- +/- dysmorphiques, voire présence de cellules anormales
- ½ vie plaquettaire normale

Périphérique (80%)

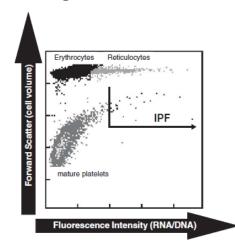
- Mégacaryocytes normaux et nombreux, sans cellules anormales
- ½ vie plaquettaire raccourcie

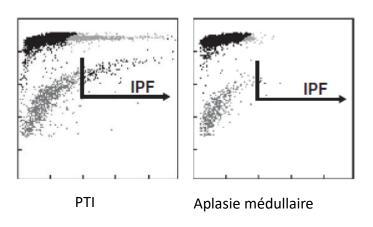
Intérêt du myélogramme?


- Orientation diagnostique d'une thrombopénie isolée sans cause évidente (peu sensible : un myélogramme normal n'affirme pas toujours une origine périphérique)
- Quasi systématique si bi- ou pancytopénie



Immature Platelet Fraction


- Déterminée sur le canal PLT-F du XN-10
- Lyse partielle de la membrane plaquettaire
- Marquage spécifique des acides nucléiques par fluorescence (pas de marquage des réticulocytes) grâce au thiazole orange
- Détermination %IPF



- En 1969 : plaquettes réticulées découvertes par Ingram et Coopersmith au sein du pool de plaquettes circulantes
- XE-2100 : marquage de l'ARN par polymethine et oxazine des réticulocytes, plaquettes matures et immatures puis séparation des populations par un algorithme

XE et IPF

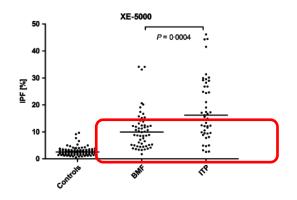
1st author	Year of publication	Population	N	Sex ratio	Age	Sysmex instrument	%-IPF
Bera E	2015	French	34	11/23	37	XE 5000	1.8 ± 1.2
Abe Y	2005	Japan	129	89/40	32	XE 2100	3.3 (1.0-10.3)
Meintker L	2013	German	110	_	_	XE 5000	2.5 (0.8-7.9)
Sakuragi M	2015	Japan	80	_	_	XE 2100	2.5 ± 1.3
Naz A	2016	Pakistan	94	52/42	33	XE 2100	1.1-17.8
Cybulska A	2016	Germany	97	_	_	XE 2100	2.6 (0.9-8.5)
Jung H	2012	Korea	2039	1161/878	50	XE 2100	m: 0.5-3.2
							f: 0.4-3
Cho YG	2007	Korea	142	_	_	XE 2100	1.7 (0.4-5.4)
Cannavo I	2009	French	52	_	_	XE 2100	2.2 (1-4.5)
Briggs C	2004	UK	50	_	_	XE 2100	3.4 (1.1-6.1)
Koike Y	2009	Japan	27		29	XE 2100	2.81 ± 1.31
Pons I	2010	Spain	14	_	49	XE 2100	2.56 (1.7-3.43)
Ibrahim H	2016	USA	26	_	35	XE 2100	2,5 (1.8-3.4)
Morkis IVC	2016	Brazil	132	_	44	XE 5000	2.2 (0.8-5.5)
							m: 2.6 (0.6-6.1
							f: 2 (0.7-4.7)
Sachdev R	2014	India	945	881/64	18-64	XE 2100	0.3-8.7
Ko YJ	2012	Korea	2152	900/1252	43	XE 2100	0.5-3.3
Hong KH	2009	Korea	54	_	32.4	XE 2100	1.7 (1.3-2.41)
Nomura T	2009	Japan	114	41/73	52	XE 2100	3.02 ± 1.89
							0.7-7.3
Miyazaki K	2015	Japan	27	_		XE 2100	3.3 ± 1.7
Ko YJ	2014	Korea	2104	1159/945	43	XE 2100/XN	1.6 (0.3-7.4)
Joergensen MK	2016	Denmark	1674	764/910	_	XE 5000	1.3-9
Osei-Bimpong A.	2009	UK	200	_	_	XE 2100	2.1 ± 0.5
Bat T	2012	USA	107	_	_	XE 5000	2.6 ± 1.2
							(0.9-7.2)
Kickler TS	2006	USA	80	_	_	XE 2100	3.1 (2.8-3.5)
Albanyan A	2008	UK	30	_	_	XE 2100	3.5 (0.83-6.17)
Pekelharing JM	2010	German	309	133/176	16-63	XE 5000	m:0.8-6.3
-							f: 0.8-6.2
Mogongoa LF	2012	South Africa	60	_	_	XE 2100	0.7-5.5
Takami A	2007	Japan	82	_	_	XE 2100	2 ± 1.1
		-					(0.5-5.7)
Dadu T	2013	India	100	_	_	XE 2100	0.7-4.3

Nombreuses études afin de déterminer les valeurs d'IPF chez des individus sains

Establishment of reference interval for immature platelet fraction

Y. J. KO, H. KIM, M. HUR, S. G. CHOI, H.-W. MOON, Y.-M. YUN, S. N. HONG

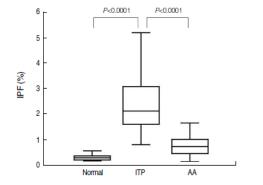
Ko: 2152 individus sains, 0.5-3.3%


Jung: 2039 individus sains, 0.4-3.2%

Joergensen: 1673 individus sains, 0.6-15% (médiane à 3.2%) XE-5000

Ko, Int J Lab Hematol 2012 Jung, Korean J Lab Med 2010 Joergensen, Scan J Clin Lab Invest 2016

XE, IPF et thrombopénie

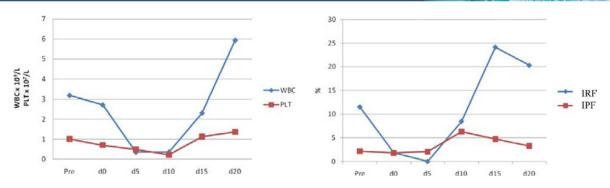


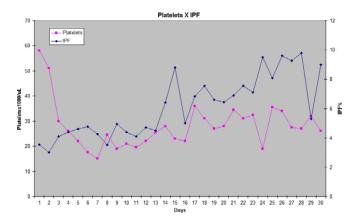
IPF médian 16.2% PTI (n=36), 10.2% AA (n=53) et 2.5% chez individus sains (n=92)

Overlap +++

Cybulska, Brit J Hematol 2017

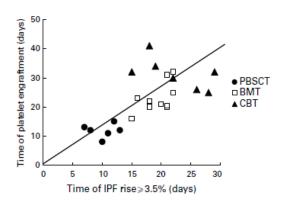
150 patients PTI, cut-off à 7.2% (sensibilité : 54%, spécificité : 100%)

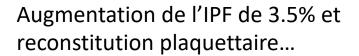

XE, IPF et allogreffe de CSH


- Reconstitution hématologique et immunologique après greffe
 - En 2 à 5 semaines: apparition PNN avec diminution des infections bactériennes et fongiques
 - GR et plaquettes: environ 15j après PNN
 - Lymphocytes: T en premier (CD8 puis CD4) puis B (jusqu'à 1 an)

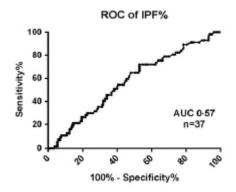
 Utilisation de l'IPF comme outil de prédiction de la récupération plaquettaire des patients allogreffés

Hausse de l'IPF en moyenne 2 jours avant plaquettes > 20 G/L 2 jours consécutifs

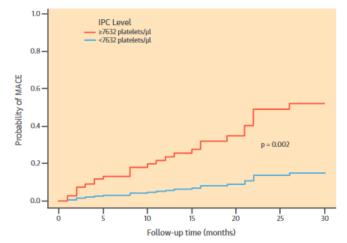



Gonçalo, Transplant Proc 2011

IPF > 6.2% prédit la reconstitution plaquettaire chez 92% des patients (20 allogreffes)


Morkis, Int J Lab Hematol 2014

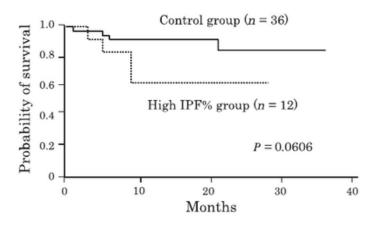
Takami, Bone Marrow Transplant 2007


%IPF pas suffisamment robuste pour prédire la reconstitution après auto et allogreffe de CSH

Reticulated platelets in sepsis

De Blasi, R.A., et al.	2013	64	RPs in predicting sepsis in critically ill patients
Enz Hubert RM et al.	2015	41	Association of RPs with sepsis diagnosis and severity
T. Muronoi et al.	2016	149	RPs in predicting mortality in patients with sepsis
Koyama K. et al.	2018	205	RPs and their relation to thrombocytopenia and mortality in patients with sepsis

Association entre %IPF, numération plaquettaire et mortalité chez les patients en sepsis sévère

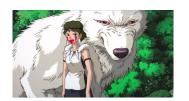


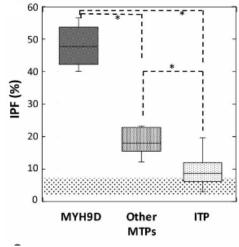
Association %IPF et la survenue d'évènements cardiovasculaires majeurs

Corpataux, J Clin Med 2020 Ibrahim, J Am Coll Cardiol 2014

51 patients: %IPF 1,1-25,1% (médiane : 5,3%)

Association %IPF > 10% et monosomie 7

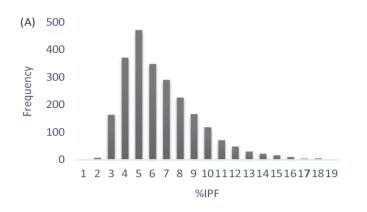

Tendance à une survie diminuée chez les patients %IPF > 10%



Immature platelet fraction measurement is influenced by platelet size and is a useful parameter for discrimination of macrothrombocytopenia

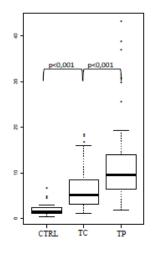
15 patients avec macrothrombopénie

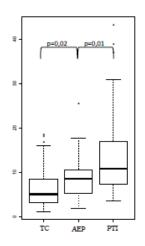
%IPF plus élevé chez les patients MYH9 (48,6% +/-1,9%) par rapport aux autres macrothrombopénies (18,9% +/-2,1%)



Miyazaki, Hematology 2015

Normes					
Population	IPF% médian	Intervalle			
Adultes	4,4	1,6 – 10,1			
• Hommes	4,6	1,8 – 10			
• Femmes	4,3	1,5 – 10,1			


Par rapport au Sysmex XE:


- IPF plus haut (+1,2%)
- Dispersion plus importante

Ali, Scand J Lab Invest 2017 Ko, Clin Chem Lab Med 2015

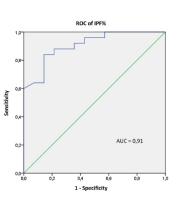
Etudes peu nombreuses alors que meilleure détermination %IPF sur les XN!

Moyenne %IPF TP : $11,9 \pm 8,7$ vs 6,9 \pm 4,8; p<0,001

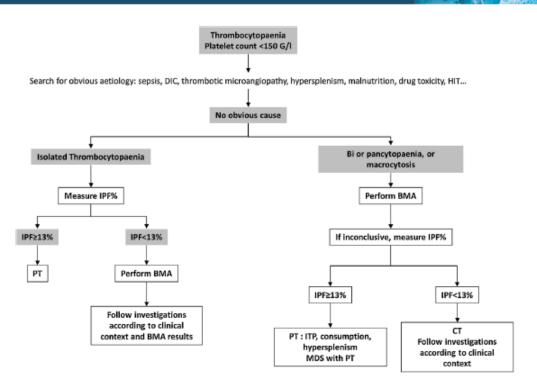
Moyenne %IPF PTI : 14 ± 9.8 vs 9 ± 5 ; p=0.01

XN, IPF et thrombopénies

Immature platelet fraction (IPF): A reliable tool to predict peripheral thrombocytopenia

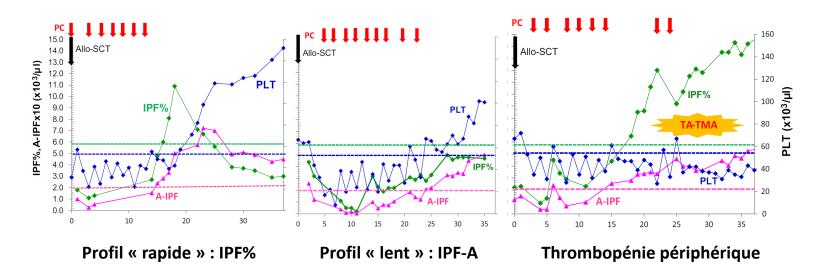

Z. Van De Wyngaert^a, E. Fournier^{b,c}, E. Bera^d, M. Carrette^d, V. Soenen^b, J. Gauthier^a, C. Preudhomme^b, T. Boyer^{b,*}

Détermination valeurs normales chez 310 témoins

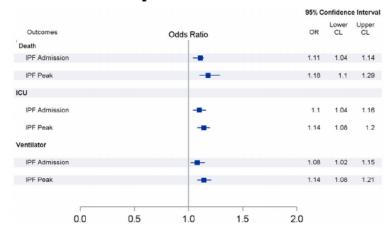

Détermination %IPF thrombopénies centrales/périphériques sur cohorte test de 45 patients (33 TP/12 TC) dans un centre (Lille)

Validation du %IPF sur cohorte de 72 patients dans trois centres (Lille, Rouen, Dunkerque)

%IPF à 13% : spécificité et VPP à 100%



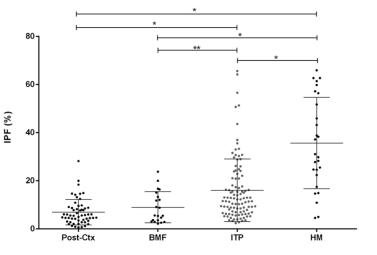
45 patients avec TP : le myélogramme aurait pu être évité chez 66% des patients


15 patients

- Seuils : IPF% = 5,8 et IPF-A = 0,2 G/I
- Prédit reconstitution plaquettaire en 2,5 jours (0-8)

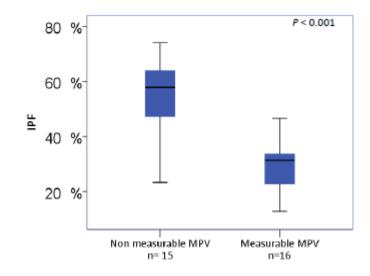
Immature platelets as a biomarker for disease severity and mortality in COVID-19 patients

678 patients (dont 139 transférés en réanimation)


IPF élevé à l'admission associé à la durée d'hospitalisation et au transfert en réanimation

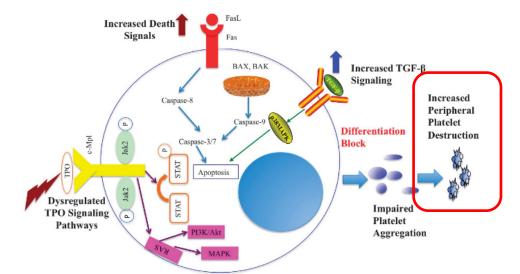
Welder, Br J Haematol 2021

(N, IPF et thrombopénies congénitales : la limite?


N=210	N	IPF%	
Thrombopathies congénitales MYH9, BS, autres	27	29.8% 4.6–65.9	Cut-off = 17,4%
PTI	105	12.3% 2.4–65.6	Se=70% Sp=90%

- Cause centrale mais IPF% élevés
- Mécanisme ?
- VPM augmenté
- Quantité ARN plus importante
- Turnover augmenté
- Défaut de formation des proplaquettes
- Relargage prématuré dans la circulation

Platelet disorder	N	Number of families	Mean platelet count [range]	Mean % IPF (IQ)
MYH9	11	6	59 [17 – 130]	56.4 (46.2 - 65.8)
bBSS	4	4	40 [26 - 58]	59.7 (58.6 - 61.6)
ACTN1	6	3	112 [83 - 154]	31.0 (27.6 - 33.5)
mBSS	4	3	74 [61 – 106]	31.3 (21.9 - 36.1)
Di George	2	2	68 [37 – 100]	22.6 (22.3 - 22.9)
Jacobsen	2	2	98 [89 - 108]	13.75 (13.2 - 14.2)
Pseudo Willebrand	1	1	42	32.8
TUB1	1	1	95	32.6


Très grande reproductibilité du %IPF selon la thrombopénie

Corrélation VPM et %IPF

IPF = suppléant au VPM lorsque celui-ci est non mesurable

- Thrombopénie et SMD/LA
 - Différents mécanismes impliqués
 - %IPF très variable selon les patients (de 9,5% à 40%!)
- Myélogramme indispensable dans ce contexte

- Amélioration des performances sur XN pour la détermination de l'IPF
- Validation du cut-off de 13% en prospectif, utilisation en pratique?
- SMD avec %IPF élevé : administration de corticoïdes?

Remerciements

Comité Scientifique BIOMEDJ Comité d'Organisation BIOMEDJ

Zoé Van de Wyngaert
Valérie Soenen

Laboratoire d'Hématologie CHU Rouen Elsa Bera Marie Carrette

Laboratoire d'Hématologie CH

Dunkerque

Elise Fournier

Merci pour votre attention

