

POINT OF CARE TESTING AND DIGITAL SOLUTIONS

Prof. Damien Gruson

Institut de recherche expérimentale et clinique

DECLARATION OF INTEREST:

COLUMN T

NONE FOR THIS PRESENTATION

Unofficial declaration of interest

Copyrigths apply

Cliniques Universitaires Saint-Luc, Brussels, Belgium

Epic

THE WORLD HAS CHANGED

THERE IS ALWAYS HOPE

Copyrigths apply

EMERGING TECHNOLOGIES AND HEALTHCARE

01010/01 0101 010101 0101

ADVANCES IN EMERGING TECHNOLOGIES HAVE COME TO THE RESCUE IN THE FORM OF:

- RAPID DIAGNOSTIC TESTS

- VACCINES USING NANOPARTICLES TO CAGE, STABILIZE AND TRANSPORT RNA MOLECULES

POINT OF CARE

Needs

Opportunities

Availability of devices

The digital environment

The power of integration

Diabetes

3.7 MILLION deaths due to diabetes

and high blood glucose

DIABETES IS

adults have diabetes

MILLION

422

Source: WHO

Atrial fibrillation

https://healthcare-in-europe.com/en/news/atrial-fibrillation-imposes-ahigh-burden-in-europe.html

Lopez-Leon et al.; 2021

- Giving users an opportunity to modify health behaviours → In a minority of individuals, this may lead to increasing anxiety about health, to device addiction, or to self-diagnosis or even to selfmedication or self-management of clinical conditions.
- Patients could also suffer from negative consequences of excessive selfmonitoring by finding it uncomfortable, intrusive, and unpleasant
- Wearables may provide false assurances to the patient, with inaccuracy of activity trackers leading individuals to overestimate their level of physical activity, limiting the effectiveness for lifestyle interventions

RELIABILITY AND SAFETY

The value of diagnostics

Wurcel et al.; 2019

The validation framework

Dimension evaluated	Potential indicators
Clinical performances and	Sensitivity, specificity, negative predictive value, positive predictive value,
clinical outcomes	length of stay, mean time between readmission to hospital.
Behavioral	Quality-adjusted life year, symptom clusters, patient satisfaction
Technical	Limit of quantification, limit of detection, range of measurement, fault
	detection systems, connectivity, interoperability, usability
Organizational	Turnaround time of analysis, impact on resources, integration in care
	pathways
Environmental	Waste and energy consumption, impact on test ordering
Economical	Price, total cost of ownership, time for training, resources needed for
	implementation and management of solution, cost of management

THE LEGAL DIMENSION

EU MDR

Regulatory bodies do not regulate wearable sensors/devices designed purely for lifestyle purposes, such as smartwatches that generally promote health and fitness.

In contrast, apps with medical purposes (diagnosis, prevention, monitoring, treatment or alleviation of disease) are currently classified as 'medical devices' by both the FDA₇₃ and the European Union, where the new Medical Device Regulation strengthen the rules for obtaining certification.

Conformity procedures for Class I medical devices under the EU MDR

Annex I – General Safety and Performance Requirements Annex II – Technical documentation Annex III – Technical documentation on post-market surveillance

Class I (All Other) No Notified Body involvement

Class Im (Measuring) Notified Body involvement

required for aspects related to conformity of products with measurement requirements

Class Is (Sterile)

(Sterile) Notified Body involvement required for aspects relating to establishing, securing and maintaining sterile medical conditions

Class Ir

(Reusable Surgical) Notified Body involvement required for aspects related to cleaning, disinfection, sterilization, maintenance, and function testing and related operating instructions (limited to those relating to the reuse of the device.)

See EU MDR Article 19 and Annex IV. Prepare Declaration of Conformity and apply CE Mark

Based on Figure 1 of MDCG 2019-15 – July 2020 rev 1

https://www.orielstat.com/blog/eu-mdr-class-1-manufacturer-requirements/

EU IVDR

Type of clinical evidence	Definition according to IVDR Article 2	Specification of potentially applicable performances in IVDR Annex I, Section 9.1
Scientific validity	The association of an analyte with a clinical condition or a physiological state	Not applicable
Analytical performance	The ability of a device to correctly detect or measure a particular analyte	Analytical sensitivity, analytical specificity, trueness (bias), precision (repeatability and reproducibility), accuracy (resulting from trueness and precision), limit of detection (LOD), limit of quantitation (LOQ), measuring range, linearity, cut-off, including determination of appropriate criteria for specimen collection and handling and control of known relevant endogenous and exogenous interference, cross-reactions
Clinical performance	The ability of a device to yield results that are correlated with a particular clinical condition or a physiological or pathological process or state in accordance with the target population and intended user	Diagnostic sensitivity, diagnostic specificity, positive predictive value, negative predictive value, likelihood ratio, expected values in normal and affected populations

The safety and benefit of each IVD, taking into account its intended purpose, should be demonstrated by means of evaluation of three types of clinical evidence (if applicable): scientific validity, analytical performance, and clinical performance.

Lubbers, Bart R.; Schilhabel, Anke; Cobbaert, Christa M.; Gonzalez, David; Dombrink, Isabel; Brüggemann, Monika; Bitter, W. Marieke; van Dongen, Jacques J.M. HemaSphere5(5):e568, May 2021. doi: 10.1097/HS9.0000000000568

- analytical sensitivity
- analytical specificity
- trueness (bias)
- precision (repeatability and reproducibility)
- and others

- diagnostic sensitivity
- diagnostic specificity
- positive predictive value, negative predictive value
- Likelihood-ratio
- expected values in normal and affected populations

\rightarrow Post-market surveillance

 \rightarrow Post-market performance follow-up

ACTA CLINICA BELGICA https://doi.org/10.1080/17843286.2020.1868906

OPEN ACCESS Check for updates

Organisation and quality monitoring for point-of-care testing (POCT) in Belgium: proposal for an expansion of the legal framework for POCT into primary health care

Viviane Van Hoof[®]^{a*}, Dragos Barglazan[®]^{b#}, Laurent Blairon[®]^{c#}, Bob Braekevelt^{d#}, Regis Debois^{e#}, Nathalie Véronique J. De Vos^{b#}, Damien Gruson[®]^{f#}, Jef Jonckheere^{d,g#}, Katrien Lanckmans[®]^{h#}, Marc Moens^{i#}, Bart Peeters^{j#}, Joris Penders^{k,I#}, Alain Roman[®]^{m,n#}, Lieve Van Hoovels^{o#}, Florent Vanstapel[®]^{p#}, Jan Y. Verbakel[®]^{q,r#}, Ann Verdonck^{s#} and Alain G. Verstraete^{t#}

DATA AND CONNECTIVITY

Fagherazzi et al. 2018

Expecting benefits from the data lake

Copyrigths apply

INTELLIGENT CONNECTIVITY The Fusion of 5G, AI and IoT

INTELLIGENTLY CONNECTING EVERYONE AND EVERYTHING TO A BETTER FUTURE

Sources: GSMA Intelligence, 2018 | Science Trends, 2018 | Softbank, 2017

Security and privacy

X mirror to the selecter fect.mirror_mirror_X"

- Include user-informed consent and privacy/policy information
- Carry out user authentication in a continuous manner to guarantee an allowed use of the device while protecting authentication data.
- Explore a combination of biometric features with privacy-preserving approaches.
- Introduce risk assessments protocols and audits of the security system
- Combine multiple private blockchains to provide users with stronger location privacy protection without reducing the quality of service

Security:	Guarantee of secure storage, secure communication and		
	secure content		
Identity	Ensure authentication for users, devices, applications and		
Management:	associated services		
Privacy:	Maintain privacy		
Scalability:	Capacity of evolution to sustainable and scalable solutions		
Reliability:	Solutions should support identification of fault and self-		
	repairing		
Data integration:	Real-time data collection, analytics, aggregation and		
	transmission		

AUGMENTED CARE

0001

HOW EMERGING TECHNOLOGIES CAN CREATE A MORE EQUITABLE WORLD

'Equity' and Global Health

- Incorporate ethical, environmental, economic, legal, social and cultural considerations

Lack of equity

- For example, the COVID- 19 nanovaccines require storage at very low temperatures
- Consider that developing countries could pay exorbitant fees for the use of emerging technologies created and patented in the industrialized world
- Most patents related to emerging technologies focus on medical conditions common in rich countries at the expense of neglected diseases prevalent in LMICs,

« THE WIDE RANGE OF NANOMEDICAL APPLICATIONS FOR GLOBAL HEALTH CAN IMPACT NEARLY EVERY MEDICAL SPECIALTY AND CAN IMPROVE THE QUALITY OF LIFE OF PEOPLE, EXTENDING LIFE EXPECTANCIES, AND REDUCING OVERALL COSTS OF HEALTHCARE »

Acknowledgments

- Prof. P. Wallemacq
- Prof. V. Haufroid
- Dr. D. Maisin
- Pharm Biol C. Fillée
- Dr. J. Dewulf
- Pharm Biol L. Boland

- Prof. B. Macq
- W. Zao

- Prof. S. Bernardini
- Prof. P. Fortina
- Prof. R. Greaves

- Dr. B. Gouget
- Prof. P. Dabla
- Prof. E. Homsak
- Prof. S. Stankovic

damien.gruson@uclouvain.be

2

V

-

B